Metamath Proof Explorer


Theorem reuimrmo

Description: Restricted uniqueness implies restricted "at most one" through implication, analogous to euimmo . (Contributed by Alexander van der Vekens, 25-Jun-2017)

Ref Expression
Assertion reuimrmo x A φ ψ ∃! x A ψ * x A φ

Proof

Step Hyp Ref Expression
1 reurmo ∃! x A ψ * x A ψ
2 rmoim x A φ ψ * x A ψ * x A φ
3 1 2 syl5 x A φ ψ ∃! x A ψ * x A φ