Metamath Proof Explorer


Theorem reuind

Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010)

Ref Expression
Hypotheses reuind.1 x = y φ ψ
reuind.2 x = y A = B
Assertion reuind x y A C φ B C ψ A = B x A C φ ∃! z C x A C φ z = A

Proof

Step Hyp Ref Expression
1 reuind.1 x = y φ ψ
2 reuind.2 x = y A = B
3 2 eleq1d x = y A C B C
4 3 1 anbi12d x = y A C φ B C ψ
5 4 cbvexvw x A C φ y B C ψ
6 r19.41v z C z = B ψ z C z = B ψ
7 6 exbii y z C z = B ψ y z C z = B ψ
8 rexcom4 z C y z = B ψ y z C z = B ψ
9 risset B C z C z = B
10 9 anbi1i B C ψ z C z = B ψ
11 10 exbii y B C ψ y z C z = B ψ
12 7 8 11 3bitr4ri y B C ψ z C y z = B ψ
13 5 12 bitri x A C φ z C y z = B ψ
14 eqeq2 A = B z = A z = B
15 14 imim2i A C φ B C ψ A = B A C φ B C ψ z = A z = B
16 biimpr z = A z = B z = B z = A
17 16 imim2i A C φ B C ψ z = A z = B A C φ B C ψ z = B z = A
18 an31 A C φ B C ψ z = B z = B B C ψ A C φ
19 18 imbi1i A C φ B C ψ z = B z = A z = B B C ψ A C φ z = A
20 impexp A C φ B C ψ z = B z = A A C φ B C ψ z = B z = A
21 impexp z = B B C ψ A C φ z = A z = B B C ψ A C φ z = A
22 19 20 21 3bitr3i A C φ B C ψ z = B z = A z = B B C ψ A C φ z = A
23 17 22 sylib A C φ B C ψ z = A z = B z = B B C ψ A C φ z = A
24 15 23 syl A C φ B C ψ A = B z = B B C ψ A C φ z = A
25 24 2alimi x y A C φ B C ψ A = B x y z = B B C ψ A C φ z = A
26 19.23v y z = B B C ψ A C φ z = A y z = B B C ψ A C φ z = A
27 an12 z = B B C ψ B C z = B ψ
28 eleq1 z = B z C B C
29 28 adantr z = B ψ z C B C
30 29 pm5.32ri z C z = B ψ B C z = B ψ
31 27 30 bitr4i z = B B C ψ z C z = B ψ
32 31 exbii y z = B B C ψ y z C z = B ψ
33 19.42v y z C z = B ψ z C y z = B ψ
34 32 33 bitri y z = B B C ψ z C y z = B ψ
35 34 imbi1i y z = B B C ψ A C φ z = A z C y z = B ψ A C φ z = A
36 26 35 bitri y z = B B C ψ A C φ z = A z C y z = B ψ A C φ z = A
37 36 albii x y z = B B C ψ A C φ z = A x z C y z = B ψ A C φ z = A
38 19.21v x z C y z = B ψ A C φ z = A z C y z = B ψ x A C φ z = A
39 37 38 bitri x y z = B B C ψ A C φ z = A z C y z = B ψ x A C φ z = A
40 25 39 sylib x y A C φ B C ψ A = B z C y z = B ψ x A C φ z = A
41 40 expd x y A C φ B C ψ A = B z C y z = B ψ x A C φ z = A
42 41 reximdvai x y A C φ B C ψ A = B z C y z = B ψ z C x A C φ z = A
43 13 42 syl5bi x y A C φ B C ψ A = B x A C φ z C x A C φ z = A
44 43 imp x y A C φ B C ψ A = B x A C φ z C x A C φ z = A
45 pm4.24 A C φ A C φ A C φ
46 45 biimpi A C φ A C φ A C φ
47 anim12 A C φ z = A A C φ w = A A C φ A C φ z = A w = A
48 eqtr3 z = A w = A z = w
49 46 47 48 syl56 A C φ z = A A C φ w = A A C φ z = w
50 49 alanimi x A C φ z = A x A C φ w = A x A C φ z = w
51 19.23v x A C φ z = w x A C φ z = w
52 50 51 sylib x A C φ z = A x A C φ w = A x A C φ z = w
53 52 com12 x A C φ x A C φ z = A x A C φ w = A z = w
54 53 a1d x A C φ z C w C x A C φ z = A x A C φ w = A z = w
55 54 ralrimivv x A C φ z C w C x A C φ z = A x A C φ w = A z = w
56 55 adantl x y A C φ B C ψ A = B x A C φ z C w C x A C φ z = A x A C φ w = A z = w
57 eqeq1 z = w z = A w = A
58 57 imbi2d z = w A C φ z = A A C φ w = A
59 58 albidv z = w x A C φ z = A x A C φ w = A
60 59 reu4 ∃! z C x A C φ z = A z C x A C φ z = A z C w C x A C φ z = A x A C φ w = A z = w
61 44 56 60 sylanbrc x y A C φ B C ψ A = B x A C φ ∃! z C x A C φ z = A