Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
elfzoelz |
|
3 |
2
|
adantl |
|
4 |
|
prmnn |
|
5 |
|
prmz |
|
6 |
|
fzoval |
|
7 |
5 6
|
syl |
|
8 |
7
|
eleq2d |
|
9 |
8
|
biimpa |
|
10 |
|
fzm1ndvds |
|
11 |
4 9 10
|
syl2an2r |
|
12 |
|
eqid |
|
13 |
12
|
modprminv |
|
14 |
13
|
simpld |
|
15 |
13
|
simprd |
|
16 |
|
1eluzge0 |
|
17 |
|
fzss1 |
|
18 |
16 17
|
mp1i |
|
19 |
18
|
sseld |
|
20 |
19
|
3ad2ant1 |
|
21 |
20
|
imdistani |
|
22 |
12
|
modprminveq |
|
23 |
22
|
biimpa |
|
24 |
23
|
eqcomd |
|
25 |
24
|
expr |
|
26 |
21 25
|
syl |
|
27 |
26
|
ralrimiva |
|
28 |
14 15 27
|
jca32 |
|
29 |
1 3 11 28
|
syl3anc |
|
30 |
|
oveq2 |
|
31 |
30
|
oveq1d |
|
32 |
31
|
eqeq1d |
|
33 |
|
eqeq1 |
|
34 |
33
|
imbi2d |
|
35 |
34
|
ralbidv |
|
36 |
32 35
|
anbi12d |
|
37 |
36
|
rspcev |
|
38 |
29 37
|
syl |
|
39 |
|
oveq2 |
|
40 |
39
|
oveq1d |
|
41 |
40
|
eqeq1d |
|
42 |
41
|
reu8 |
|
43 |
38 42
|
sylibr |
|