Step |
Hyp |
Ref |
Expression |
1 |
|
reu3op.a |
|
2 |
|
reuop.x |
|
3 |
|
nfsbc1v |
|
4 |
|
nfsbc1v |
|
5 |
|
sbceq1a |
|
6 |
|
dfsbcq |
|
7 |
3 4 5 6
|
reu8nf |
|
8 |
|
elxp2 |
|
9 |
1
|
biimpcd |
|
10 |
9
|
adantr |
|
11 |
10
|
adantr |
|
12 |
11
|
imp |
|
13 |
|
opelxpi |
|
14 |
|
dfsbcq |
|
15 |
|
eqeq2 |
|
16 |
14 15
|
imbi12d |
|
17 |
16
|
adantl |
|
18 |
13 17
|
rspcdv |
|
19 |
18
|
adantr |
|
20 |
|
opex |
|
21 |
20 2
|
sbcie |
|
22 |
|
pm2.27 |
|
23 |
21 22
|
sylbir |
|
24 |
|
eqcom |
|
25 |
23 24
|
syl6ibr |
|
26 |
25
|
com12 |
|
27 |
|
eqeq2 |
|
28 |
27
|
eqcoms |
|
29 |
28
|
imbi2d |
|
30 |
26 29
|
syl5ibrcom |
|
31 |
30
|
a1d |
|
32 |
19 31
|
syl6 |
|
33 |
32
|
expimpd |
|
34 |
33
|
imp4c |
|
35 |
34
|
impcom |
|
36 |
35
|
ralrimivva |
|
37 |
12 36
|
jca |
|
38 |
37
|
ex |
|
39 |
38
|
reximdvva |
|
40 |
39
|
com12 |
|
41 |
8 40
|
sylbi |
|
42 |
41
|
rexlimiv |
|
43 |
|
opelxpi |
|
44 |
43
|
adantr |
|
45 |
|
simprl |
|
46 |
|
nfsbc1v |
|
47 |
|
nfv |
|
48 |
46 47
|
nfim |
|
49 |
|
nfsbc1v |
|
50 |
|
nfv |
|
51 |
49 50
|
nfim |
|
52 |
|
sbceq1a |
|
53 |
|
opeq1 |
|
54 |
53
|
eqeq1d |
|
55 |
52 54
|
imbi12d |
|
56 |
|
sbceq1a |
|
57 |
|
opeq2 |
|
58 |
57
|
eqeq1d |
|
59 |
56 58
|
imbi12d |
|
60 |
48 51 55 59
|
rspc2 |
|
61 |
60
|
ad2antlr |
|
62 |
2
|
sbcop |
|
63 |
|
pm2.27 |
|
64 |
62 63
|
sylbir |
|
65 |
|
eqcom |
|
66 |
64 65
|
syl6ibr |
|
67 |
66
|
com12 |
|
68 |
61 67
|
syl6 |
|
69 |
68
|
expimpd |
|
70 |
69
|
expcom |
|
71 |
70
|
impd |
|
72 |
71
|
impcom |
|
73 |
|
dfsbcq |
|
74 |
|
eqeq2 |
|
75 |
73 74
|
imbi12d |
|
76 |
72 75
|
syl5ibrcom |
|
77 |
76
|
rexlimdvva |
|
78 |
|
elxp2 |
|
79 |
78
|
biimpi |
|
80 |
77 79
|
impel |
|
81 |
80
|
ralrimiva |
|
82 |
|
nfv |
|
83 |
|
nfcv |
|
84 |
|
nfv |
|
85 |
3 84
|
nfim |
|
86 |
83 85
|
nfralw |
|
87 |
82 86
|
nfan |
|
88 |
|
eqeq1 |
|
89 |
88
|
imbi2d |
|
90 |
89
|
ralbidv |
|
91 |
1 90
|
anbi12d |
|
92 |
87 91
|
rspce |
|
93 |
44 45 81 92
|
syl12anc |
|
94 |
93
|
ex |
|
95 |
94
|
rexlimivv |
|
96 |
42 95
|
impbii |
|
97 |
7 96
|
bitri |
|