Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Restricted uniqueness with difference, union, and intersection
reupick
Next ⟩
reupick3
Metamath Proof Explorer
Ascii
Unicode
Theorem
reupick
Description:
Restricted uniqueness "picks" a member of a subclass.
(Contributed by
NM
, 21-Aug-1999)
Ref
Expression
Assertion
reupick
⊢
A
⊆
B
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
∧
φ
→
x
∈
A
↔
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
ssel
⊢
A
⊆
B
→
x
∈
A
→
x
∈
B
2
1
ad2antrr
⊢
A
⊆
B
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
∧
φ
→
x
∈
A
→
x
∈
B
3
df-rex
⊢
∃
x
∈
A
φ
↔
∃
x
x
∈
A
∧
φ
4
df-reu
⊢
∃!
x
∈
B
φ
↔
∃!
x
x
∈
B
∧
φ
5
3
4
anbi12i
⊢
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
↔
∃
x
x
∈
A
∧
φ
∧
∃!
x
x
∈
B
∧
φ
6
1
ancrd
⊢
A
⊆
B
→
x
∈
A
→
x
∈
B
∧
x
∈
A
7
6
anim1d
⊢
A
⊆
B
→
x
∈
A
∧
φ
→
x
∈
B
∧
x
∈
A
∧
φ
8
an32
⊢
x
∈
B
∧
x
∈
A
∧
φ
↔
x
∈
B
∧
φ
∧
x
∈
A
9
7
8
syl6ib
⊢
A
⊆
B
→
x
∈
A
∧
φ
→
x
∈
B
∧
φ
∧
x
∈
A
10
9
eximdv
⊢
A
⊆
B
→
∃
x
x
∈
A
∧
φ
→
∃
x
x
∈
B
∧
φ
∧
x
∈
A
11
eupick
⊢
∃!
x
x
∈
B
∧
φ
∧
∃
x
x
∈
B
∧
φ
∧
x
∈
A
→
x
∈
B
∧
φ
→
x
∈
A
12
11
ex
⊢
∃!
x
x
∈
B
∧
φ
→
∃
x
x
∈
B
∧
φ
∧
x
∈
A
→
x
∈
B
∧
φ
→
x
∈
A
13
10
12
syl9
⊢
A
⊆
B
→
∃!
x
x
∈
B
∧
φ
→
∃
x
x
∈
A
∧
φ
→
x
∈
B
∧
φ
→
x
∈
A
14
13
com23
⊢
A
⊆
B
→
∃
x
x
∈
A
∧
φ
→
∃!
x
x
∈
B
∧
φ
→
x
∈
B
∧
φ
→
x
∈
A
15
14
imp32
⊢
A
⊆
B
∧
∃
x
x
∈
A
∧
φ
∧
∃!
x
x
∈
B
∧
φ
→
x
∈
B
∧
φ
→
x
∈
A
16
5
15
sylan2b
⊢
A
⊆
B
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
→
x
∈
B
∧
φ
→
x
∈
A
17
16
expcomd
⊢
A
⊆
B
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
→
φ
→
x
∈
B
→
x
∈
A
18
17
imp
⊢
A
⊆
B
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
∧
φ
→
x
∈
B
→
x
∈
A
19
2
18
impbid
⊢
A
⊆
B
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
∧
φ
→
x
∈
A
↔
x
∈
B