Metamath Proof Explorer


Theorem reupick

Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999)

Ref Expression
Assertion reupick A B x A φ ∃! x B φ φ x A x B

Proof

Step Hyp Ref Expression
1 ssel A B x A x B
2 1 ad2antrr A B x A φ ∃! x B φ φ x A x B
3 df-rex x A φ x x A φ
4 df-reu ∃! x B φ ∃! x x B φ
5 3 4 anbi12i x A φ ∃! x B φ x x A φ ∃! x x B φ
6 1 ancrd A B x A x B x A
7 6 anim1d A B x A φ x B x A φ
8 an32 x B x A φ x B φ x A
9 7 8 syl6ib A B x A φ x B φ x A
10 9 eximdv A B x x A φ x x B φ x A
11 eupick ∃! x x B φ x x B φ x A x B φ x A
12 11 ex ∃! x x B φ x x B φ x A x B φ x A
13 10 12 syl9 A B ∃! x x B φ x x A φ x B φ x A
14 13 com23 A B x x A φ ∃! x x B φ x B φ x A
15 14 imp32 A B x x A φ ∃! x x B φ x B φ x A
16 5 15 sylan2b A B x A φ ∃! x B φ x B φ x A
17 16 expcomd A B x A φ ∃! x B φ φ x B x A
18 17 imp A B x A φ ∃! x B φ φ x B x A
19 2 18 impbid A B x A φ ∃! x B φ φ x A x B