Metamath Proof Explorer


Theorem reupick

Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999)

Ref Expression
Assertion reupick ABxAφ∃!xBφφxAxB

Proof

Step Hyp Ref Expression
1 ssel ABxAxB
2 1 ad2antrr ABxAφ∃!xBφφxAxB
3 df-rex xAφxxAφ
4 df-reu ∃!xBφ∃!xxBφ
5 3 4 anbi12i xAφ∃!xBφxxAφ∃!xxBφ
6 1 ancrd ABxAxBxA
7 6 anim1d ABxAφxBxAφ
8 an32 xBxAφxBφxA
9 7 8 imbitrdi ABxAφxBφxA
10 9 eximdv ABxxAφxxBφxA
11 eupick ∃!xxBφxxBφxAxBφxA
12 11 ex ∃!xxBφxxBφxAxBφxA
13 10 12 syl9 AB∃!xxBφxxAφxBφxA
14 13 com23 ABxxAφ∃!xxBφxBφxA
15 14 imp32 ABxxAφ∃!xxBφxBφxA
16 5 15 sylan2b ABxAφ∃!xBφxBφxA
17 16 expcomd ABxAφ∃!xBφφxBxA
18 17 imp ABxAφ∃!xBφφxBxA
19 2 18 impbid ABxAφ∃!xBφφxAxB