Metamath Proof Explorer


Theorem reupick2

Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Assertion reupick2 x A ψ φ x A ψ ∃! x A φ x A φ ψ

Proof

Step Hyp Ref Expression
1 ancr ψ φ ψ φ ψ
2 1 ralimi x A ψ φ x A ψ φ ψ
3 rexim x A ψ φ ψ x A ψ x A φ ψ
4 2 3 syl x A ψ φ x A ψ x A φ ψ
5 reupick3 ∃! x A φ x A φ ψ x A φ ψ
6 5 3exp ∃! x A φ x A φ ψ x A φ ψ
7 6 com12 x A φ ψ ∃! x A φ x A φ ψ
8 4 7 syl6 x A ψ φ x A ψ ∃! x A φ x A φ ψ
9 8 3imp1 x A ψ φ x A ψ ∃! x A φ x A φ ψ
10 rsp x A ψ φ x A ψ φ
11 10 3ad2ant1 x A ψ φ x A ψ ∃! x A φ x A ψ φ
12 11 imp x A ψ φ x A ψ ∃! x A φ x A ψ φ
13 9 12 impbid x A ψ φ x A ψ ∃! x A φ x A φ ψ