Metamath Proof Explorer


Theorem reupick3

Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016)

Ref Expression
Assertion reupick3 ∃! x A φ x A φ ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 df-reu ∃! x A φ ∃! x x A φ
2 df-rex x A φ ψ x x A φ ψ
3 anass x A φ ψ x A φ ψ
4 3 exbii x x A φ ψ x x A φ ψ
5 2 4 bitr4i x A φ ψ x x A φ ψ
6 eupick ∃! x x A φ x x A φ ψ x A φ ψ
7 1 5 6 syl2anb ∃! x A φ x A φ ψ x A φ ψ
8 7 expd ∃! x A φ x A φ ψ x A φ ψ
9 8 3impia ∃! x A φ x A φ ψ x A φ ψ