Metamath Proof Explorer


Theorem reurex

Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999)

Ref Expression
Assertion reurex ∃! x A φ x A φ

Proof

Step Hyp Ref Expression
1 reu5 ∃! x A φ x A φ * x A φ
2 1 simplbi ∃! x A φ x A φ