Metamath Proof Explorer


Theorem reurexprg

Description: Convert a restricted existential uniqueness over a pair to a restricted existential quantification and an implication . (Contributed by AV, 3-Apr-2023)

Ref Expression
Hypotheses reuprg.1 x = A φ ψ
reuprg.2 x = B φ χ
Assertion reurexprg A V B W ∃! x A B φ x A B φ χ ψ A = B

Proof

Step Hyp Ref Expression
1 reuprg.1 x = A φ ψ
2 reuprg.2 x = B φ χ
3 1 2 reuprg A V B W ∃! x A B φ ψ χ χ ψ A = B
4 1 2 rexprg A V B W x A B φ ψ χ
5 4 bicomd A V B W ψ χ x A B φ
6 5 anbi1d A V B W ψ χ χ ψ A = B x A B φ χ ψ A = B
7 3 6 bitrd A V B W ∃! x A B φ x A B φ χ ψ A = B