Metamath Proof Explorer


Theorem reusn

Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006) (Proof shortened by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion reusn ∃! x A φ y x A | φ = y

Proof

Step Hyp Ref Expression
1 euabsn2 ∃! x x A φ y x | x A φ = y
2 df-reu ∃! x A φ ∃! x x A φ
3 df-rab x A | φ = x | x A φ
4 3 eqeq1i x A | φ = y x | x A φ = y
5 4 exbii y x A | φ = y y x | x A φ = y
6 1 2 5 3bitr4i ∃! x A φ y x A | φ = y