Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
reusng
Next ⟩
2ralsng
Metamath Proof Explorer
Ascii
Unicode
Theorem
reusng
Description:
Restricted existential uniqueness over a singleton.
(Contributed by
AV
, 3-Apr-2023)
Ref
Expression
Hypothesis
ralsng.1
⊢
x
=
A
→
φ
↔
ψ
Assertion
reusng
⊢
A
∈
V
→
∃!
x
∈
A
φ
↔
ψ
Proof
Step
Hyp
Ref
Expression
1
ralsng.1
⊢
x
=
A
→
φ
↔
ψ
2
nfv
⊢
Ⅎ
x
ψ
3
2
1
reusngf
⊢
A
∈
V
→
∃!
x
∈
A
φ
↔
ψ