Metamath Proof Explorer


Theorem reusng

Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023)

Ref Expression
Hypothesis ralsng.1 x = A φ ψ
Assertion reusng A V ∃! x A φ ψ

Proof

Step Hyp Ref Expression
1 ralsng.1 x = A φ ψ
2 nfv x ψ
3 2 1 reusngf A V ∃! x A φ ψ