Metamath Proof Explorer


Theorem reusngf

Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023)

Ref Expression
Hypotheses rexsngf.1 xψ
rexsngf.2 x=Aφψ
Assertion reusngf AV∃!xAφψ

Proof

Step Hyp Ref Expression
1 rexsngf.1 xψ
2 rexsngf.2 x=Aφψ
3 nfsbc1v x[˙c/x]˙φ
4 nfsbc1v x[˙w/x]˙φ
5 sbceq1a x=wφ[˙w/x]˙φ
6 dfsbcq w=c[˙w/x]˙φ[˙c/x]˙φ
7 3 4 5 6 reu8nf ∃!xAφxAφcA[˙c/x]˙φx=c
8 nfcv _xA
9 nfv xA=c
10 3 9 nfim x[˙c/x]˙φA=c
11 8 10 nfralw xcA[˙c/x]˙φA=c
12 1 11 nfan xψcA[˙c/x]˙φA=c
13 eqeq1 x=Ax=cA=c
14 13 imbi2d x=A[˙c/x]˙φx=c[˙c/x]˙φA=c
15 14 ralbidv x=AcA[˙c/x]˙φx=ccA[˙c/x]˙φA=c
16 2 15 anbi12d x=AφcA[˙c/x]˙φx=cψcA[˙c/x]˙φA=c
17 12 16 rexsngf AVxAφcA[˙c/x]˙φx=cψcA[˙c/x]˙φA=c
18 nfv c[˙A/x]˙φA=A
19 dfsbcq c=A[˙c/x]˙φ[˙A/x]˙φ
20 eqeq2 c=AA=cA=A
21 19 20 imbi12d c=A[˙c/x]˙φA=c[˙A/x]˙φA=A
22 18 21 ralsngf AVcA[˙c/x]˙φA=c[˙A/x]˙φA=A
23 22 anbi2d AVψcA[˙c/x]˙φA=cψ[˙A/x]˙φA=A
24 eqidd [˙A/x]˙φA=A
25 24 biantru ψψ[˙A/x]˙φA=A
26 23 25 bitr4di AVψcA[˙c/x]˙φA=cψ
27 17 26 bitrd AVxAφcA[˙c/x]˙φx=cψ
28 7 27 bitrid AV∃!xAφψ