| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2a1 |
|
| 2 |
|
sqrtcl |
|
| 3 |
2
|
adantr |
|
| 4 |
2
|
negcld |
|
| 5 |
4
|
adantr |
|
| 6 |
2
|
eqnegd |
|
| 7 |
|
simpl |
|
| 8 |
|
simpr |
|
| 9 |
7 8
|
sqr00d |
|
| 10 |
9
|
ex |
|
| 11 |
6 10
|
sylbid |
|
| 12 |
11
|
necon3bd |
|
| 13 |
12
|
imp |
|
| 14 |
3 5 13
|
3jca |
|
| 15 |
|
sqrtth |
|
| 16 |
|
sqneg |
|
| 17 |
2 16
|
syl |
|
| 18 |
17 15
|
eqtrd |
|
| 19 |
15 18
|
jca |
|
| 20 |
19
|
adantr |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
eqeq1d |
|
| 25 |
22 24
|
2nreu |
|
| 26 |
14 20 25
|
sylc |
|
| 27 |
26
|
pm2.21d |
|
| 28 |
27
|
expcom |
|
| 29 |
1 28
|
pm2.61i |
|
| 30 |
|
2nn |
|
| 31 |
|
0cnd |
|
| 32 |
|
oveq1 |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
|
eqeq1 |
|
| 35 |
34
|
imbi2d |
|
| 36 |
35
|
ralbidv |
|
| 37 |
33 36
|
anbi12d |
|
| 38 |
37
|
adantl |
|
| 39 |
|
0exp |
|
| 40 |
|
sqeq0 |
|
| 41 |
40
|
biimpd |
|
| 42 |
|
eqcom |
|
| 43 |
41 42
|
imbitrrdi |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
ralrimiva |
|
| 46 |
39 45
|
jca |
|
| 47 |
31 38 46
|
rspcedvd |
|
| 48 |
30 47
|
mp1i |
|
| 49 |
|
eqeq2 |
|
| 50 |
|
eqeq2 |
|
| 51 |
50
|
imbi1d |
|
| 52 |
51
|
ralbidv |
|
| 53 |
49 52
|
anbi12d |
|
| 54 |
53
|
rexbidv |
|
| 55 |
48 54
|
mpbird |
|
| 56 |
55
|
a1i |
|
| 57 |
|
oveq1 |
|
| 58 |
57
|
eqeq1d |
|
| 59 |
58
|
reu8 |
|
| 60 |
56 59
|
imbitrrdi |
|
| 61 |
29 60
|
impbid |
|