Metamath Proof Explorer


Theorem reusq0

Description: A complex number is the square of exactly one complex number iff the given complex number is zero. (Contributed by AV, 21-Jun-2023)

Ref Expression
Assertion reusq0 X ∃! x x 2 = X X = 0

Proof

Step Hyp Ref Expression
1 2a1 X = 0 X ∃! x x 2 = X X = 0
2 sqrtcl X X
3 2 adantr X ¬ X = 0 X
4 2 negcld X X
5 4 adantr X ¬ X = 0 X
6 2 eqnegd X X = X X = 0
7 simpl X X = 0 X
8 simpr X X = 0 X = 0
9 7 8 sqr00d X X = 0 X = 0
10 9 ex X X = 0 X = 0
11 6 10 sylbid X X = X X = 0
12 11 necon3bd X ¬ X = 0 X X
13 12 imp X ¬ X = 0 X X
14 3 5 13 3jca X ¬ X = 0 X X X X
15 sqrtth X X 2 = X
16 sqneg X X 2 = X 2
17 2 16 syl X X 2 = X 2
18 17 15 eqtrd X X 2 = X
19 15 18 jca X X 2 = X X 2 = X
20 19 adantr X ¬ X = 0 X 2 = X X 2 = X
21 oveq1 x = X x 2 = X 2
22 21 eqeq1d x = X x 2 = X X 2 = X
23 oveq1 x = X x 2 = X 2
24 23 eqeq1d x = X x 2 = X X 2 = X
25 22 24 2nreu X X X X X 2 = X X 2 = X ¬ ∃! x x 2 = X
26 14 20 25 sylc X ¬ X = 0 ¬ ∃! x x 2 = X
27 26 pm2.21d X ¬ X = 0 ∃! x x 2 = X X = 0
28 27 expcom ¬ X = 0 X ∃! x x 2 = X X = 0
29 1 28 pm2.61i X ∃! x x 2 = X X = 0
30 2nn 2
31 0cnd 2 0
32 oveq1 x = 0 x 2 = 0 2
33 32 eqeq1d x = 0 x 2 = 0 0 2 = 0
34 eqeq1 x = 0 x = y 0 = y
35 34 imbi2d x = 0 y 2 = 0 x = y y 2 = 0 0 = y
36 35 ralbidv x = 0 y y 2 = 0 x = y y y 2 = 0 0 = y
37 33 36 anbi12d x = 0 x 2 = 0 y y 2 = 0 x = y 0 2 = 0 y y 2 = 0 0 = y
38 37 adantl 2 x = 0 x 2 = 0 y y 2 = 0 x = y 0 2 = 0 y y 2 = 0 0 = y
39 0exp 2 0 2 = 0
40 sqeq0 y y 2 = 0 y = 0
41 40 biimpd y y 2 = 0 y = 0
42 eqcom 0 = y y = 0
43 41 42 syl6ibr y y 2 = 0 0 = y
44 43 adantl 2 y y 2 = 0 0 = y
45 44 ralrimiva 2 y y 2 = 0 0 = y
46 39 45 jca 2 0 2 = 0 y y 2 = 0 0 = y
47 31 38 46 rspcedvd 2 x x 2 = 0 y y 2 = 0 x = y
48 30 47 mp1i X = 0 x x 2 = 0 y y 2 = 0 x = y
49 eqeq2 X = 0 x 2 = X x 2 = 0
50 eqeq2 X = 0 y 2 = X y 2 = 0
51 50 imbi1d X = 0 y 2 = X x = y y 2 = 0 x = y
52 51 ralbidv X = 0 y y 2 = X x = y y y 2 = 0 x = y
53 49 52 anbi12d X = 0 x 2 = X y y 2 = X x = y x 2 = 0 y y 2 = 0 x = y
54 53 rexbidv X = 0 x x 2 = X y y 2 = X x = y x x 2 = 0 y y 2 = 0 x = y
55 48 54 mpbird X = 0 x x 2 = X y y 2 = X x = y
56 55 a1i X X = 0 x x 2 = X y y 2 = X x = y
57 oveq1 x = y x 2 = y 2
58 57 eqeq1d x = y x 2 = X y 2 = X
59 58 reu8 ∃! x x 2 = X x x 2 = X y y 2 = X x = y
60 56 59 syl6ibr X X = 0 ∃! x x 2 = X
61 29 60 impbid X ∃! x x 2 = X X = 0