Step |
Hyp |
Ref |
Expression |
1 |
|
2a1 |
|
2 |
|
sqrtcl |
|
3 |
2
|
adantr |
|
4 |
2
|
negcld |
|
5 |
4
|
adantr |
|
6 |
2
|
eqnegd |
|
7 |
|
simpl |
|
8 |
|
simpr |
|
9 |
7 8
|
sqr00d |
|
10 |
9
|
ex |
|
11 |
6 10
|
sylbid |
|
12 |
11
|
necon3bd |
|
13 |
12
|
imp |
|
14 |
3 5 13
|
3jca |
|
15 |
|
sqrtth |
|
16 |
|
sqneg |
|
17 |
2 16
|
syl |
|
18 |
17 15
|
eqtrd |
|
19 |
15 18
|
jca |
|
20 |
19
|
adantr |
|
21 |
|
oveq1 |
|
22 |
21
|
eqeq1d |
|
23 |
|
oveq1 |
|
24 |
23
|
eqeq1d |
|
25 |
22 24
|
2nreu |
|
26 |
14 20 25
|
sylc |
|
27 |
26
|
pm2.21d |
|
28 |
27
|
expcom |
|
29 |
1 28
|
pm2.61i |
|
30 |
|
2nn |
|
31 |
|
0cnd |
|
32 |
|
oveq1 |
|
33 |
32
|
eqeq1d |
|
34 |
|
eqeq1 |
|
35 |
34
|
imbi2d |
|
36 |
35
|
ralbidv |
|
37 |
33 36
|
anbi12d |
|
38 |
37
|
adantl |
|
39 |
|
0exp |
|
40 |
|
sqeq0 |
|
41 |
40
|
biimpd |
|
42 |
|
eqcom |
|
43 |
41 42
|
syl6ibr |
|
44 |
43
|
adantl |
|
45 |
44
|
ralrimiva |
|
46 |
39 45
|
jca |
|
47 |
31 38 46
|
rspcedvd |
|
48 |
30 47
|
mp1i |
|
49 |
|
eqeq2 |
|
50 |
|
eqeq2 |
|
51 |
50
|
imbi1d |
|
52 |
51
|
ralbidv |
|
53 |
49 52
|
anbi12d |
|
54 |
53
|
rexbidv |
|
55 |
48 54
|
mpbird |
|
56 |
55
|
a1i |
|
57 |
|
oveq1 |
|
58 |
57
|
eqeq1d |
|
59 |
58
|
reu8 |
|
60 |
56 59
|
syl6ibr |
|
61 |
29 60
|
impbid |
|