Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Restricted uniqueness with difference, union, and intersection
reuss
Next ⟩
reuun1
Metamath Proof Explorer
Ascii
Unicode
Theorem
reuss
Description:
Transfer uniqueness to a smaller subclass.
(Contributed by
NM
, 21-Aug-1999)
Ref
Expression
Assertion
reuss
⊢
A
⊆
B
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
→
∃!
x
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
id
⊢
φ
→
φ
2
1
rgenw
⊢
∀
x
∈
A
φ
→
φ
3
reuss2
⊢
A
⊆
B
∧
∀
x
∈
A
φ
→
φ
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
→
∃!
x
∈
A
φ
4
2
3
mpanl2
⊢
A
⊆
B
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
→
∃!
x
∈
A
φ
5
4
3impb
⊢
A
⊆
B
∧
∃
x
∈
A
φ
∧
∃!
x
∈
B
φ
→
∃!
x
∈
A
φ