Metamath Proof Explorer


Theorem reuss

Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999)

Ref Expression
Assertion reuss A B x A φ ∃! x B φ ∃! x A φ

Proof

Step Hyp Ref Expression
1 id φ φ
2 1 rgenw x A φ φ
3 reuss2 A B x A φ φ x A φ ∃! x B φ ∃! x A φ
4 2 3 mpanl2 A B x A φ ∃! x B φ ∃! x A φ
5 4 3impb A B x A φ ∃! x B φ ∃! x A φ