Metamath Proof Explorer


Theorem reusv2lem1

Description: Lemma for reusv2 . (Contributed by NM, 22-Oct-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Assertion reusv2lem1 A ∃! x y A x = B x y A x = B

Proof

Step Hyp Ref Expression
1 n0 A y y A
2 nfra1 y y A x = B
3 2 nfmov y * x y A x = B
4 rsp y A x = B y A x = B
5 4 com12 y A y A x = B x = B
6 5 alrimiv y A x y A x = B x = B
7 mo2icl x y A x = B x = B * x y A x = B
8 6 7 syl y A * x y A x = B
9 3 8 exlimi y y A * x y A x = B
10 1 9 sylbi A * x y A x = B
11 df-eu ∃! x y A x = B x y A x = B * x y A x = B
12 11 rbaib * x y A x = B ∃! x y A x = B x y A x = B
13 10 12 syl A ∃! x y A x = B x y A x = B