Description: Lemma for reusv2 . (Contributed by NM, 4-Jan-2013) (Proof shortened by Mario Carneiro, 19-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | reusv2lem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru | |
|
2 | biimt | |
|
3 | 1 2 | mpan2 | |
4 | ibar | |
|
5 | 3 4 | bitr3d | |
6 | eleq1 | |
|
7 | 6 | pm5.32ri | |
8 | 5 7 | bitr4di | |
9 | 8 | ralimi | |
10 | ralbi | |
|
11 | 9 10 | syl | |
12 | 11 | eubidv | |
13 | r19.28zv | |
|
14 | 13 | eubidv | |
15 | 12 14 | sylan9bb | |
16 | 1 | biantrur | |
17 | 16 | rexbii | |
18 | 17 | reubii | |
19 | reusv2lem4 | |
|
20 | 18 19 | bitri | |
21 | df-reu | |
|
22 | 15 20 21 | 3bitr4g | |