Metamath Proof Explorer


Theorem reusv2lem5

Description: Lemma for reusv2 . (Contributed by NM, 4-Jan-2013) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Assertion reusv2lem5 yBCAB∃!xAyBx=C∃!xAyBx=C

Proof

Step Hyp Ref Expression
1 tru
2 biimt CAx=CCAx=C
3 1 2 mpan2 CAx=CCAx=C
4 ibar CAx=CCAx=C
5 3 4 bitr3d CACAx=CCAx=C
6 eleq1 x=CxACA
7 6 pm5.32ri xAx=CCAx=C
8 5 7 bitr4di CACAx=CxAx=C
9 8 ralimi yBCAyBCAx=CxAx=C
10 ralbi yBCAx=CxAx=CyBCAx=CyBxAx=C
11 9 10 syl yBCAyBCAx=CyBxAx=C
12 11 eubidv yBCA∃!xyBCAx=C∃!xyBxAx=C
13 r19.28zv ByBxAx=CxAyBx=C
14 13 eubidv B∃!xyBxAx=C∃!xxAyBx=C
15 12 14 sylan9bb yBCAB∃!xyBCAx=C∃!xxAyBx=C
16 1 biantrur x=Cx=C
17 16 rexbii yBx=CyBx=C
18 17 reubii ∃!xAyBx=C∃!xAyBx=C
19 reusv2lem4 ∃!xAyBx=C∃!xyBCAx=C
20 18 19 bitri ∃!xAyBx=C∃!xyBCAx=C
21 df-reu ∃!xAyBx=C∃!xxAyBx=C
22 15 20 21 3bitr4g yBCAB∃!xAyBx=C∃!xAyBx=C