Metamath Proof Explorer


Theorem reusv3i

Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012)

Ref Expression
Hypotheses reusv3.1 y = z φ ψ
reusv3.2 y = z C = D
Assertion reusv3i x A y B φ x = C y B z B φ ψ C = D

Proof

Step Hyp Ref Expression
1 reusv3.1 y = z φ ψ
2 reusv3.2 y = z C = D
3 2 eqeq2d y = z x = C x = D
4 1 3 imbi12d y = z φ x = C ψ x = D
5 4 cbvralvw y B φ x = C z B ψ x = D
6 5 biimpi y B φ x = C z B ψ x = D
7 raaanv y B z B φ x = C ψ x = D y B φ x = C z B ψ x = D
8 anim12 φ x = C ψ x = D φ ψ x = C x = D
9 eqtr2 x = C x = D C = D
10 8 9 syl6 φ x = C ψ x = D φ ψ C = D
11 10 2ralimi y B z B φ x = C ψ x = D y B z B φ ψ C = D
12 7 11 sylbir y B φ x = C z B ψ x = D y B z B φ ψ C = D
13 6 12 mpdan y B φ x = C y B z B φ ψ C = D
14 13 rexlimivw x A y B φ x = C y B z B φ ψ C = D