Metamath Proof Explorer


Theorem reutru

Description: Two ways of expressing "exactly one" element. (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Assertion reutru ∃! x x A ∃! x A

Proof

Step Hyp Ref Expression
1 tru
2 1 biantru x A x A
3 2 eubii ∃! x x A ∃! x x A
4 df-reu ∃! x A ∃! x x A
5 3 4 bitr4i ∃! x x A ∃! x A