Metamath Proof Explorer


Theorem reutruALT

Description: Alternate proof for reutru . (Contributed by Zhi Wang, 23-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion reutruALT ∃! x x A ∃! x A

Proof

Step Hyp Ref Expression
1 rextru x x A x A
2 rmotru * x x A * x A
3 1 2 anbi12i x x A * x x A x A * x A
4 df-eu ∃! x x A x x A * x x A
5 reu5 ∃! x A x A * x A
6 3 4 5 3bitr4i ∃! x x A ∃! x A