Metamath Proof Explorer


Theorem reuun1

Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005)

Ref Expression
Assertion reuun1 x A φ ∃! x A B φ ψ ∃! x A φ

Proof

Step Hyp Ref Expression
1 ssun1 A A B
2 orc φ φ ψ
3 2 rgenw x A φ φ ψ
4 reuss2 A A B x A φ φ ψ x A φ ∃! x A B φ ψ ∃! x A φ
5 1 3 4 mpanl12 x A φ ∃! x A B φ ψ ∃! x A φ