Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Restricted uniqueness with difference, union, and intersection
reuun1
Next ⟩
reupick
Metamath Proof Explorer
Ascii
Unicode
Theorem
reuun1
Description:
Transfer uniqueness to a smaller class.
(Contributed by
NM
, 21-Oct-2005)
Ref
Expression
Assertion
reuun1
⊢
∃
x
∈
A
φ
∧
∃!
x
∈
A
∪
B
φ
∨
ψ
→
∃!
x
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
ssun1
⊢
A
⊆
A
∪
B
2
orc
⊢
φ
→
φ
∨
ψ
3
2
rgenw
⊢
∀
x
∈
A
φ
→
φ
∨
ψ
4
reuss2
⊢
A
⊆
A
∪
B
∧
∀
x
∈
A
φ
→
φ
∨
ψ
∧
∃
x
∈
A
φ
∧
∃!
x
∈
A
∪
B
φ
∨
ψ
→
∃!
x
∈
A
φ
5
1
3
4
mpanl12
⊢
∃
x
∈
A
φ
∧
∃!
x
∈
A
∪
B
φ
∨
ψ
→
∃!
x
∈
A
φ