Metamath Proof Explorer


Theorem reuv

Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010)

Ref Expression
Assertion reuv ∃! x V φ ∃! x φ

Proof

Step Hyp Ref Expression
1 df-reu ∃! x V φ ∃! x x V φ
2 vex x V
3 2 biantrur φ x V φ
4 3 eubii ∃! x φ ∃! x x V φ
5 1 4 bitr4i ∃! x V φ ∃! x φ