Metamath Proof Explorer


Theorem reuxfr

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . (Contributed by NM, 14-Nov-2004) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypotheses reuxfr.1 y C A B
reuxfr.2 x B * y C x = A
Assertion reuxfr ∃! x B y C x = A φ ∃! y C φ

Proof

Step Hyp Ref Expression
1 reuxfr.1 y C A B
2 reuxfr.2 x B * y C x = A
3 1 adantl y C A B
4 2 adantl x B * y C x = A
5 3 4 reuxfrd ∃! x B y C x = A φ ∃! y C φ
6 5 mptru ∃! x B y C x = A φ ∃! y C φ