Metamath Proof Explorer


Theorem reuxfr1

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhyp to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004)

Ref Expression
Hypotheses reuxfr1.1 y C A B
reuxfr1.2 x B ∃! y C x = A
reuxfr1.3 x = A φ ψ
Assertion reuxfr1 ∃! x B φ ∃! y C ψ

Proof

Step Hyp Ref Expression
1 reuxfr1.1 y C A B
2 reuxfr1.2 x B ∃! y C x = A
3 reuxfr1.3 x = A φ ψ
4 1 adantl y C A B
5 2 adantl x B ∃! y C x = A
6 4 5 3 reuxfr1ds ∃! x B φ ∃! y C ψ
7 6 mptru ∃! x B φ ∃! y C ψ