Metamath Proof Explorer


Theorem reuxfr1d

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Cf. reuxfr1ds . (Contributed by Thierry Arnoux, 7-Apr-2017)

Ref Expression
Hypotheses reuxfr1d.1 φ y C A B
reuxfr1d.2 φ x B ∃! y C x = A
reuxfr1d.3 φ x = A ψ χ
Assertion reuxfr1d φ ∃! x B ψ ∃! y C χ

Proof

Step Hyp Ref Expression
1 reuxfr1d.1 φ y C A B
2 reuxfr1d.2 φ x B ∃! y C x = A
3 reuxfr1d.3 φ x = A ψ χ
4 reurex ∃! y C x = A y C x = A
5 2 4 syl φ x B y C x = A
6 5 biantrurd φ x B ψ y C x = A ψ
7 r19.41v y C x = A ψ y C x = A ψ
8 3 pm5.32da φ x = A ψ x = A χ
9 8 rexbidv φ y C x = A ψ y C x = A χ
10 7 9 bitr3id φ y C x = A ψ y C x = A χ
11 10 adantr φ x B y C x = A ψ y C x = A χ
12 6 11 bitrd φ x B ψ y C x = A χ
13 12 reubidva φ ∃! x B ψ ∃! x B y C x = A χ
14 reurmo ∃! y C x = A * y C x = A
15 2 14 syl φ x B * y C x = A
16 1 15 reuxfrd φ ∃! x B y C x = A χ ∃! y C χ
17 13 16 bitrd φ ∃! x B ψ ∃! y C χ