Metamath Proof Explorer


Theorem reuxfr1ds

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhypd to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012)

Ref Expression
Hypotheses reuxfr1ds.1 φ y C A B
reuxfr1ds.2 φ x B ∃! y C x = A
reuxfr1ds.3 x = A ψ χ
Assertion reuxfr1ds φ ∃! x B ψ ∃! y C χ

Proof

Step Hyp Ref Expression
1 reuxfr1ds.1 φ y C A B
2 reuxfr1ds.2 φ x B ∃! y C x = A
3 reuxfr1ds.3 x = A ψ χ
4 3 adantl φ x = A ψ χ
5 1 2 4 reuxfr1d φ ∃! x B ψ ∃! y C χ