Metamath Proof Explorer


Theorem reuxfrd

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . (Contributed by NM, 16-Jan-2012) Separate variables B and C . (Revised by Thierry Arnoux, 8-Oct-2017)

Ref Expression
Hypotheses reuxfrd.1 φ y C A B
reuxfrd.2 φ x B * y C x = A
Assertion reuxfrd φ ∃! x B y C x = A ψ ∃! y C ψ

Proof

Step Hyp Ref Expression
1 reuxfrd.1 φ y C A B
2 reuxfrd.2 φ x B * y C x = A
3 rmoan * y C x = A * y C ψ x = A
4 2 3 syl φ x B * y C ψ x = A
5 ancom ψ x = A x = A ψ
6 5 rmobii * y C ψ x = A * y C x = A ψ
7 4 6 sylib φ x B * y C x = A ψ
8 7 ralrimiva φ x B * y C x = A ψ
9 2reuswap x B * y C x = A ψ ∃! x B y C x = A ψ ∃! y C x B x = A ψ
10 8 9 syl φ ∃! x B y C x = A ψ ∃! y C x B x = A ψ
11 2reuswap2 y C * x x B x = A ψ ∃! y C x B x = A ψ ∃! x B y C x = A ψ
12 moeq * x x = A
13 12 moani * x x B ψ x = A
14 ancom x B ψ x = A x = A x B ψ
15 an12 x = A x B ψ x B x = A ψ
16 14 15 bitri x B ψ x = A x B x = A ψ
17 16 mobii * x x B ψ x = A * x x B x = A ψ
18 13 17 mpbi * x x B x = A ψ
19 18 a1i y C * x x B x = A ψ
20 11 19 mprg ∃! y C x B x = A ψ ∃! x B y C x = A ψ
21 10 20 impbid1 φ ∃! x B y C x = A ψ ∃! y C x B x = A ψ
22 biidd x = A ψ ψ
23 22 ceqsrexv A B x B x = A ψ ψ
24 1 23 syl φ y C x B x = A ψ ψ
25 24 reubidva φ ∃! y C x B x = A ψ ∃! y C ψ
26 21 25 bitrd φ ∃! x B y C x = A ψ ∃! y C ψ