Step |
Hyp |
Ref |
Expression |
1 |
|
ccatcl |
|
2 |
|
revcl |
|
3 |
|
wrdfn |
|
4 |
1 2 3
|
3syl |
|
5 |
|
revlen |
|
6 |
1 5
|
syl |
|
7 |
|
ccatlen |
|
8 |
|
lencl |
|
9 |
8
|
nn0cnd |
|
10 |
|
lencl |
|
11 |
10
|
nn0cnd |
|
12 |
|
addcom |
|
13 |
9 11 12
|
syl2an |
|
14 |
6 7 13
|
3eqtrd |
|
15 |
14
|
oveq2d |
|
16 |
15
|
fneq2d |
|
17 |
4 16
|
mpbid |
|
18 |
|
revcl |
|
19 |
|
revcl |
|
20 |
|
ccatcl |
|
21 |
18 19 20
|
syl2anr |
|
22 |
|
wrdfn |
|
23 |
21 22
|
syl |
|
24 |
|
ccatlen |
|
25 |
18 19 24
|
syl2anr |
|
26 |
|
revlen |
|
27 |
|
revlen |
|
28 |
26 27
|
oveqan12rd |
|
29 |
25 28
|
eqtrd |
|
30 |
29
|
oveq2d |
|
31 |
30
|
fneq2d |
|
32 |
23 31
|
mpbid |
|
33 |
|
id |
|
34 |
10
|
nn0zd |
|
35 |
34
|
adantl |
|
36 |
|
fzospliti |
|
37 |
33 35 36
|
syl2anr |
|
38 |
|
simpll |
|
39 |
|
simplr |
|
40 |
|
fzoval |
|
41 |
34 40
|
syl |
|
42 |
41
|
adantl |
|
43 |
42
|
eleq2d |
|
44 |
43
|
biimpa |
|
45 |
|
fznn0sub2 |
|
46 |
44 45
|
syl |
|
47 |
41
|
ad2antlr |
|
48 |
46 47
|
eleqtrrd |
|
49 |
|
ccatval3 |
|
50 |
38 39 48 49
|
syl3anc |
|
51 |
7 13
|
eqtrd |
|
52 |
51
|
oveq1d |
|
53 |
11
|
adantl |
|
54 |
9
|
adantr |
|
55 |
|
1cnd |
|
56 |
53 54 55
|
addsubd |
|
57 |
52 56
|
eqtrd |
|
58 |
57
|
oveq1d |
|
59 |
58
|
adantr |
|
60 |
|
peano2zm |
|
61 |
34 60
|
syl |
|
62 |
61
|
zcnd |
|
63 |
62
|
ad2antlr |
|
64 |
9
|
ad2antrr |
|
65 |
|
elfzoelz |
|
66 |
65
|
zcnd |
|
67 |
66
|
adantl |
|
68 |
63 64 67
|
addsubd |
|
69 |
59 68
|
eqtrd |
|
70 |
69
|
fveq2d |
|
71 |
|
revfv |
|
72 |
71
|
adantll |
|
73 |
50 70 72
|
3eqtr4d |
|
74 |
34
|
uzidd |
|
75 |
|
uzaddcl |
|
76 |
74 8 75
|
syl2anr |
|
77 |
51 76
|
eqeltrd |
|
78 |
|
fzoss2 |
|
79 |
77 78
|
syl |
|
80 |
79
|
sselda |
|
81 |
|
revfv |
|
82 |
1 80 81
|
syl2an2r |
|
83 |
18
|
ad2antlr |
|
84 |
19
|
ad2antrr |
|
85 |
26
|
adantl |
|
86 |
85
|
oveq2d |
|
87 |
86
|
eleq2d |
|
88 |
87
|
biimpar |
|
89 |
|
ccatval1 |
|
90 |
83 84 88 89
|
syl3anc |
|
91 |
73 82 90
|
3eqtr4d |
|
92 |
8
|
nn0zd |
|
93 |
|
peano2zm |
|
94 |
92 93
|
syl |
|
95 |
94
|
zcnd |
|
96 |
95
|
ad2antrr |
|
97 |
|
elfzoelz |
|
98 |
97
|
zcnd |
|
99 |
98
|
adantl |
|
100 |
11
|
ad2antlr |
|
101 |
96 99 100
|
subsub3d |
|
102 |
26
|
oveq2d |
|
103 |
102
|
oveq2d |
|
104 |
103
|
ad2antlr |
|
105 |
7
|
oveq1d |
|
106 |
54 53 55
|
addsubd |
|
107 |
105 106
|
eqtrd |
|
108 |
107
|
oveq1d |
|
109 |
108
|
adantr |
|
110 |
101 104 109
|
3eqtr4rd |
|
111 |
110
|
fveq2d |
|
112 |
|
simpll |
|
113 |
|
simplr |
|
114 |
|
zaddcl |
|
115 |
34 92 114
|
syl2anr |
|
116 |
|
peano2zm |
|
117 |
115 116
|
syl |
|
118 |
|
fzoval |
|
119 |
115 118
|
syl |
|
120 |
119
|
eleq2d |
|
121 |
120
|
biimpa |
|
122 |
|
fzrev2i |
|
123 |
117 121 122
|
syl2an2r |
|
124 |
52
|
oveq1d |
|
125 |
124
|
adantr |
|
126 |
92
|
adantr |
|
127 |
|
fzoval |
|
128 |
126 127
|
syl |
|
129 |
117
|
zcnd |
|
130 |
129
|
subidd |
|
131 |
|
addcl |
|
132 |
11 9 131
|
syl2anr |
|
133 |
132 55 53
|
sub32d |
|
134 |
|
pncan2 |
|
135 |
11 9 134
|
syl2anr |
|
136 |
135
|
oveq1d |
|
137 |
133 136
|
eqtrd |
|
138 |
130 137
|
oveq12d |
|
139 |
128 138
|
eqtr4d |
|
140 |
139
|
adantr |
|
141 |
123 125 140
|
3eltr4d |
|
142 |
|
ccatval1 |
|
143 |
112 113 141 142
|
syl3anc |
|
144 |
|
simpl |
|
145 |
102
|
ad2antlr |
|
146 |
|
id |
|
147 |
|
fzosubel3 |
|
148 |
146 126 147
|
syl2anr |
|
149 |
145 148
|
eqeltrd |
|
150 |
|
revfv |
|
151 |
144 149 150
|
syl2an2r |
|
152 |
111 143 151
|
3eqtr4d |
|
153 |
|
fzoss1 |
|
154 |
|
nn0uz |
|
155 |
153 154
|
eleq2s |
|
156 |
10 155
|
syl |
|
157 |
156
|
adantl |
|
158 |
51
|
oveq2d |
|
159 |
157 158
|
sseqtrrd |
|
160 |
159
|
sselda |
|
161 |
1 160 81
|
syl2an2r |
|
162 |
18
|
ad2antlr |
|
163 |
19
|
ad2antrr |
|
164 |
85 28
|
oveq12d |
|
165 |
164
|
eleq2d |
|
166 |
165
|
biimpar |
|
167 |
|
ccatval2 |
|
168 |
162 163 166 167
|
syl3anc |
|
169 |
152 161 168
|
3eqtr4d |
|
170 |
91 169
|
jaodan |
|
171 |
37 170
|
syldan |
|
172 |
17 32 171
|
eqfnfvd |
|