Database
REAL AND COMPLEX NUMBERS
Words over a set
Reversing words
revcl
Next ⟩
revlen
Metamath Proof Explorer
Ascii
Unicode
Theorem
revcl
Description:
The reverse of a word is a word.
(Contributed by
Stefan O'Rear
, 26-Aug-2015)
Ref
Expression
Assertion
revcl
⊢
W
∈
Word
A
→
reverse
⁡
W
∈
Word
A
Proof
Step
Hyp
Ref
Expression
1
revval
⊢
W
∈
Word
A
→
reverse
⁡
W
=
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
2
wrdf
⊢
W
∈
Word
A
→
W
:
0
..^
W
⟶
A
3
2
adantr
⊢
W
∈
Word
A
∧
x
∈
0
..^
W
→
W
:
0
..^
W
⟶
A
4
simpr
⊢
W
∈
Word
A
∧
x
∈
0
..^
W
→
x
∈
0
..^
W
5
lencl
⊢
W
∈
Word
A
→
W
∈
ℕ
0
6
5
adantr
⊢
W
∈
Word
A
∧
x
∈
0
..^
W
→
W
∈
ℕ
0
7
6
nn0zd
⊢
W
∈
Word
A
∧
x
∈
0
..^
W
→
W
∈
ℤ
8
fzoval
⊢
W
∈
ℤ
→
0
..^
W
=
0
…
W
−
1
9
7
8
syl
⊢
W
∈
Word
A
∧
x
∈
0
..^
W
→
0
..^
W
=
0
…
W
−
1
10
4
9
eleqtrd
⊢
W
∈
Word
A
∧
x
∈
0
..^
W
→
x
∈
0
…
W
−
1
11
fznn0sub2
⊢
x
∈
0
…
W
−
1
→
W
-
1
-
x
∈
0
…
W
−
1
12
10
11
syl
⊢
W
∈
Word
A
∧
x
∈
0
..^
W
→
W
-
1
-
x
∈
0
…
W
−
1
13
12
9
eleqtrrd
⊢
W
∈
Word
A
∧
x
∈
0
..^
W
→
W
-
1
-
x
∈
0
..^
W
14
3
13
ffvelrnd
⊢
W
∈
Word
A
∧
x
∈
0
..^
W
→
W
⁡
W
-
1
-
x
∈
A
15
14
fmpttd
⊢
W
∈
Word
A
→
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
:
0
..^
W
⟶
A
16
iswrdi
⊢
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
:
0
..^
W
⟶
A
→
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
∈
Word
A
17
15
16
syl
⊢
W
∈
Word
A
→
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
∈
Word
A
18
1
17
eqeltrd
⊢
W
∈
Word
A
→
reverse
⁡
W
∈
Word
A