Step |
Hyp |
Ref |
Expression |
1 |
|
wrdfn |
|
2 |
1
|
ad2antrr |
|
3 |
|
lencl |
|
4 |
3
|
nn0zd |
|
5 |
|
fzoval |
|
6 |
4 5
|
syl |
|
7 |
6
|
adantr |
|
8 |
7
|
eleq2d |
|
9 |
8
|
biimpa |
|
10 |
|
fznn0sub2 |
|
11 |
9 10
|
syl |
|
12 |
7
|
adantr |
|
13 |
11 12
|
eleqtrrd |
|
14 |
|
fvco2 |
|
15 |
2 13 14
|
syl2anc |
|
16 |
|
lenco |
|
17 |
16
|
oveq1d |
|
18 |
17
|
oveq1d |
|
19 |
18
|
adantr |
|
20 |
19
|
fveq2d |
|
21 |
|
revfv |
|
22 |
21
|
adantlr |
|
23 |
22
|
fveq2d |
|
24 |
15 20 23
|
3eqtr4d |
|
25 |
24
|
mpteq2dva |
|
26 |
16
|
oveq2d |
|
27 |
26
|
mpteq1d |
|
28 |
|
revlen |
|
29 |
28
|
adantr |
|
30 |
29
|
oveq2d |
|
31 |
30
|
mpteq1d |
|
32 |
25 27 31
|
3eqtr4rd |
|
33 |
|
simpr |
|
34 |
|
revcl |
|
35 |
|
wrdf |
|
36 |
34 35
|
syl |
|
37 |
36
|
adantr |
|
38 |
|
fcompt |
|
39 |
33 37 38
|
syl2anc |
|
40 |
|
ffun |
|
41 |
|
simpl |
|
42 |
|
cofunexg |
|
43 |
40 41 42
|
syl2an2 |
|
44 |
|
revval |
|
45 |
43 44
|
syl |
|
46 |
32 39 45
|
3eqtr4d |
|