| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdfn |
|
| 2 |
1
|
ad2antrr |
|
| 3 |
|
lencl |
|
| 4 |
3
|
nn0zd |
|
| 5 |
|
fzoval |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
adantr |
|
| 8 |
7
|
eleq2d |
|
| 9 |
8
|
biimpa |
|
| 10 |
|
fznn0sub2 |
|
| 11 |
9 10
|
syl |
|
| 12 |
7
|
adantr |
|
| 13 |
11 12
|
eleqtrrd |
|
| 14 |
|
fvco2 |
|
| 15 |
2 13 14
|
syl2anc |
|
| 16 |
|
lenco |
|
| 17 |
16
|
oveq1d |
|
| 18 |
17
|
oveq1d |
|
| 19 |
18
|
adantr |
|
| 20 |
19
|
fveq2d |
|
| 21 |
|
revfv |
|
| 22 |
21
|
adantlr |
|
| 23 |
22
|
fveq2d |
|
| 24 |
15 20 23
|
3eqtr4d |
|
| 25 |
24
|
mpteq2dva |
|
| 26 |
16
|
oveq2d |
|
| 27 |
26
|
mpteq1d |
|
| 28 |
|
revlen |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
oveq2d |
|
| 31 |
30
|
mpteq1d |
|
| 32 |
25 27 31
|
3eqtr4rd |
|
| 33 |
|
simpr |
|
| 34 |
|
revcl |
|
| 35 |
|
wrdf |
|
| 36 |
34 35
|
syl |
|
| 37 |
36
|
adantr |
|
| 38 |
|
fcompt |
|
| 39 |
33 37 38
|
syl2anc |
|
| 40 |
|
ffun |
|
| 41 |
|
simpl |
|
| 42 |
|
cofunexg |
|
| 43 |
40 41 42
|
syl2an2 |
|
| 44 |
|
revval |
|
| 45 |
43 44
|
syl |
|
| 46 |
32 39 45
|
3eqtr4d |
|