Database
REAL AND COMPLEX NUMBERS
Words over a set
Reversing words
revfv
Next ⟩
rev0
Metamath Proof Explorer
Ascii
Unicode
Theorem
revfv
Description:
Reverse of a word at a point.
(Contributed by
Stefan O'Rear
, 26-Aug-2015)
Ref
Expression
Assertion
revfv
⊢
W
∈
Word
A
∧
X
∈
0
..^
W
→
reverse
⁡
W
⁡
X
=
W
⁡
W
-
1
-
X
Proof
Step
Hyp
Ref
Expression
1
revval
⊢
W
∈
Word
A
→
reverse
⁡
W
=
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
2
1
fveq1d
⊢
W
∈
Word
A
→
reverse
⁡
W
⁡
X
=
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
⁡
X
3
oveq2
⊢
x
=
X
→
W
-
1
-
x
=
W
-
1
-
X
4
3
fveq2d
⊢
x
=
X
→
W
⁡
W
-
1
-
x
=
W
⁡
W
-
1
-
X
5
eqid
⊢
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
=
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
6
fvex
⊢
W
⁡
W
-
1
-
X
∈
V
7
4
5
6
fvmpt
⊢
X
∈
0
..^
W
→
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
⁡
X
=
W
⁡
W
-
1
-
X
8
2
7
sylan9eq
⊢
W
∈
Word
A
∧
X
∈
0
..^
W
→
reverse
⁡
W
⁡
X
=
W
⁡
W
-
1
-
X