Metamath Proof Explorer


Theorem revfv

Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Assertion revfv W Word A X 0 ..^ W reverse W X = W W - 1 - X

Proof

Step Hyp Ref Expression
1 revval W Word A reverse W = x 0 ..^ W W W - 1 - x
2 1 fveq1d W Word A reverse W X = x 0 ..^ W W W - 1 - x X
3 oveq2 x = X W - 1 - x = W - 1 - X
4 3 fveq2d x = X W W - 1 - x = W W - 1 - X
5 eqid x 0 ..^ W W W - 1 - x = x 0 ..^ W W W - 1 - x
6 fvex W W - 1 - X V
7 4 5 6 fvmpt X 0 ..^ W x 0 ..^ W W W - 1 - x X = W W - 1 - X
8 2 7 sylan9eq W Word A X 0 ..^ W reverse W X = W W - 1 - X