Step |
Hyp |
Ref |
Expression |
1 |
|
revcl |
|
2 |
|
revcl |
|
3 |
|
wrdf |
|
4 |
|
ffn |
|
5 |
1 2 3 4
|
4syl |
|
6 |
|
revlen |
|
7 |
1 6
|
syl |
|
8 |
|
revlen |
|
9 |
7 8
|
eqtrd |
|
10 |
9
|
oveq2d |
|
11 |
10
|
fneq2d |
|
12 |
5 11
|
mpbid |
|
13 |
|
wrdfn |
|
14 |
|
simpr |
|
15 |
8
|
adantr |
|
16 |
15
|
oveq2d |
|
17 |
14 16
|
eleqtrrd |
|
18 |
|
revfv |
|
19 |
1 17 18
|
syl2an2r |
|
20 |
15
|
oveq1d |
|
21 |
20
|
fvoveq1d |
|
22 |
|
lencl |
|
23 |
22
|
nn0zd |
|
24 |
|
fzoval |
|
25 |
23 24
|
syl |
|
26 |
25
|
eleq2d |
|
27 |
26
|
biimpa |
|
28 |
|
fznn0sub2 |
|
29 |
27 28
|
syl |
|
30 |
25
|
adantr |
|
31 |
29 30
|
eleqtrrd |
|
32 |
|
revfv |
|
33 |
31 32
|
syldan |
|
34 |
|
peano2zm |
|
35 |
23 34
|
syl |
|
36 |
35
|
zcnd |
|
37 |
|
elfzoelz |
|
38 |
37
|
zcnd |
|
39 |
|
nncan |
|
40 |
36 38 39
|
syl2an |
|
41 |
40
|
fveq2d |
|
42 |
33 41
|
eqtrd |
|
43 |
21 42
|
eqtrd |
|
44 |
19 43
|
eqtrd |
|
45 |
12 13 44
|
eqfnfvd |
|