Database
REAL AND COMPLEX NUMBERS
Words over a set
Reversing words
revval
Next ⟩
revcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
revval
Description:
Value of the word reversing function.
(Contributed by
Stefan O'Rear
, 26-Aug-2015)
Ref
Expression
Assertion
revval
⊢
W
∈
V
→
reverse
⁡
W
=
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
W
∈
V
→
W
∈
V
2
fveq2
⊢
w
=
W
→
w
=
W
3
2
oveq2d
⊢
w
=
W
→
0
..^
w
=
0
..^
W
4
id
⊢
w
=
W
→
w
=
W
5
2
oveq1d
⊢
w
=
W
→
w
−
1
=
W
−
1
6
5
oveq1d
⊢
w
=
W
→
w
-
1
-
x
=
W
-
1
-
x
7
4
6
fveq12d
⊢
w
=
W
→
w
⁡
w
-
1
-
x
=
W
⁡
W
-
1
-
x
8
3
7
mpteq12dv
⊢
w
=
W
→
x
∈
0
..^
w
⟼
w
⁡
w
-
1
-
x
=
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
9
df-reverse
⊢
reverse
=
w
∈
V
⟼
x
∈
0
..^
w
⟼
w
⁡
w
-
1
-
x
10
ovex
⊢
0
..^
W
∈
V
11
10
mptex
⊢
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
∈
V
12
8
9
11
fvmpt
⊢
W
∈
V
→
reverse
⁡
W
=
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x
13
1
12
syl
⊢
W
∈
V
→
reverse
⁡
W
=
x
∈
0
..^
W
⟼
W
⁡
W
-
1
-
x