Metamath Proof Explorer


Theorem revval

Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Assertion revval W V reverse W = x 0 ..^ W W W - 1 - x

Proof

Step Hyp Ref Expression
1 elex W V W V
2 fveq2 w = W w = W
3 2 oveq2d w = W 0 ..^ w = 0 ..^ W
4 id w = W w = W
5 2 oveq1d w = W w 1 = W 1
6 5 oveq1d w = W w - 1 - x = W - 1 - x
7 4 6 fveq12d w = W w w - 1 - x = W W - 1 - x
8 3 7 mpteq12dv w = W x 0 ..^ w w w - 1 - x = x 0 ..^ W W W - 1 - x
9 df-reverse reverse = w V x 0 ..^ w w w - 1 - x
10 ovex 0 ..^ W V
11 10 mptex x 0 ..^ W W W - 1 - x V
12 8 9 11 fvmpt W V reverse W = x 0 ..^ W W W - 1 - x
13 1 12 syl W V reverse W = x 0 ..^ W W W - 1 - x