Metamath Proof Explorer


Theorem rexab

Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014) (Revised by Mario Carneiro, 3-Sep-2015) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024)

Ref Expression
Hypothesis ralab.1 y = x φ ψ
Assertion rexab x y | φ χ x ψ χ

Proof

Step Hyp Ref Expression
1 ralab.1 y = x φ ψ
2 dfrex2 x y | φ χ ¬ x y | φ ¬ χ
3 1 ralab x y | φ ¬ χ x ψ ¬ χ
4 2 3 xchbinx x y | φ χ ¬ x ψ ¬ χ
5 imnang x ψ ¬ χ x ¬ ψ χ
6 4 5 xchbinx x y | φ χ ¬ x ¬ ψ χ
7 df-ex x ψ χ ¬ x ¬ ψ χ
8 6 7 bitr4i x y | φ χ x ψ χ