Metamath Proof Explorer


Theorem rexabOLD

Description: Obsolete version of rexab as of 2-Nov-2024. (Contributed by Mario Carneiro, 23-Jan-2014) (Revised by Mario Carneiro, 3-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralab.1 y = x φ ψ
Assertion rexabOLD x y | φ χ x ψ χ

Proof

Step Hyp Ref Expression
1 ralab.1 y = x φ ψ
2 df-rex x y | φ χ x x y | φ χ
3 vex x V
4 3 1 elab x y | φ ψ
5 4 anbi1i x y | φ χ ψ χ
6 5 exbii x x y | φ χ x ψ χ
7 2 6 bitri x y | φ χ x ψ χ