Metamath Proof Explorer


Theorem rexabsle

Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rexabsle.1 x φ
rexabsle.2 φ x A B
Assertion rexabsle φ y x A B y w x A B w z x A z B

Proof

Step Hyp Ref Expression
1 rexabsle.1 x φ
2 rexabsle.2 φ x A B
3 nfv x y = a
4 breq2 y = a B y B a
5 3 4 ralbid y = a x A B y x A B a
6 5 cbvrexvw y x A B y a x A B a
7 6 a1i φ y x A B y a x A B a
8 1 2 rexabslelem φ a x A B a b x A B b c x A c B
9 breq2 b = w B b B w
10 9 ralbidv b = w x A B b x A B w
11 10 cbvrexvw b x A B b w x A B w
12 breq1 c = z c B z B
13 12 ralbidv c = z x A c B x A z B
14 13 cbvrexvw c x A c B z x A z B
15 11 14 anbi12i b x A B b c x A c B w x A B w z x A z B
16 15 a1i φ b x A B b c x A c B w x A B w z x A z B
17 7 8 16 3bitrd φ y x A B y w x A B w z x A z B