Metamath Proof Explorer


Theorem rexaddd

Description: The extended real addition operation when both arguments are real. Deduction version of rexadd . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rexaddd.1 φ A
rexaddd.2 φ B
Assertion rexaddd φ A + 𝑒 B = A + B

Proof

Step Hyp Ref Expression
1 rexaddd.1 φ A
2 rexaddd.2 φ B
3 rexadd A B A + 𝑒 B = A + B
4 1 2 3 syl2anc φ A + 𝑒 B = A + B