Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
rexaddd
Metamath Proof Explorer
Description: The extended real addition operation when both arguments are real.
Deduction version of rexadd . (Contributed by Glauco Siliprandi , 24-Dec-2020)
Ref
Expression
Hypotheses
rexaddd.1
⊢ φ → A ∈ ℝ
rexaddd.2
⊢ φ → B ∈ ℝ
Assertion
rexaddd
⊢ φ → A + 𝑒 B = A + B
Proof
Step
Hyp
Ref
Expression
1
rexaddd.1
⊢ φ → A ∈ ℝ
2
rexaddd.2
⊢ φ → B ∈ ℝ
3
rexadd
⊢ A ∈ ℝ ∧ B ∈ ℝ → A + 𝑒 B = A + B
4
1 2 3
syl2anc
⊢ φ → A + 𝑒 B = A + B