Metamath Proof Explorer


Theorem rexanid

Description: Cancellation law for restricted existential quantification. (Contributed by Peter Mazsa, 24-May-2018) (Proof shortened by Wolf Lammen, 8-Jul-2023)

Ref Expression
Assertion rexanid x A x A φ x A φ

Proof

Step Hyp Ref Expression
1 ibar x A φ x A φ
2 1 bicomd x A x A φ φ
3 2 rexbiia x A x A φ x A φ