Metamath Proof Explorer


Theorem rexanuz2

Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013)

Ref Expression
Hypothesis rexuz3.1 Z = M
Assertion rexanuz2 j Z k j φ ψ j Z k j φ j Z k j ψ

Proof

Step Hyp Ref Expression
1 rexuz3.1 Z = M
2 eluzel2 j M M
3 2 1 eleq2s j Z M
4 3 a1d j Z k j φ ψ M
5 4 rexlimiv j Z k j φ ψ M
6 3 a1d j Z k j φ M
7 6 rexlimiv j Z k j φ M
8 7 adantr j Z k j φ j Z k j ψ M
9 1 rexuz3 M j Z k j φ ψ j k j φ ψ
10 rexanuz j k j φ ψ j k j φ j k j ψ
11 1 rexuz3 M j Z k j φ j k j φ
12 1 rexuz3 M j Z k j ψ j k j ψ
13 11 12 anbi12d M j Z k j φ j Z k j ψ j k j φ j k j ψ
14 10 13 bitr4id M j k j φ ψ j Z k j φ j Z k j ψ
15 9 14 bitrd M j Z k j φ ψ j Z k j φ j Z k j ψ
16 5 8 15 pm5.21nii j Z k j φ ψ j Z k j φ j Z k j ψ