Step |
Hyp |
Ref |
Expression |
1 |
|
rexanuz2nf.1 |
|
2 |
|
rexanuz2nf.2 |
|
3 |
|
rexanuz2nf.3 |
|
4 |
|
0nn0 |
|
5 |
|
nn0ge0 |
|
6 |
5
|
rgen |
|
7 |
|
fveq2 |
|
8 |
|
nn0uz |
|
9 |
7 8
|
eqtr4di |
|
10 |
9
|
raleqdv |
|
11 |
5
|
ad2antlr |
|
12 |
|
simpll |
|
13 |
|
simpr |
|
14 |
12 13
|
eqbrtrd |
|
15 |
12 14
|
jca |
|
16 |
11 15
|
impbida |
|
17 |
16
|
ralbidva |
|
18 |
10 17
|
bitrd |
|
19 |
18
|
rspcev |
|
20 |
4 6 19
|
mp2an |
|
21 |
|
nfcv |
|
22 |
1 21
|
nfcxfr |
|
23 |
22 21 1
|
rexeqif |
|
24 |
20 23
|
mpbir |
|
25 |
2
|
ralbii |
|
26 |
25
|
rexbii |
|
27 |
24 26
|
mpbir |
|
28 |
|
1nn0 |
|
29 |
|
nngt0 |
|
30 |
29
|
rgen |
|
31 |
|
fveq2 |
|
32 |
|
nnuz |
|
33 |
31 32
|
eqtr4di |
|
34 |
33
|
raleqdv |
|
35 |
34
|
rspcev |
|
36 |
28 30 35
|
mp2an |
|
37 |
22 21 1
|
rexeqif |
|
38 |
36 37
|
mpbir |
|
39 |
3
|
ralbii |
|
40 |
39
|
rexbii |
|
41 |
38 40
|
mpbir |
|
42 |
27 41
|
pm3.2i |
|
43 |
|
nfv |
|
44 |
|
nfcv |
|
45 |
|
nfcv |
|
46 |
8
|
uzid3 |
|
47 |
46
|
adantr |
|
48 |
|
0re |
|
49 |
48
|
ltnri |
|
50 |
49
|
a1i |
|
51 |
|
eqcom |
|
52 |
51
|
biimpi |
|
53 |
50 52
|
brneqtrd |
|
54 |
53
|
intnand |
|
55 |
54
|
adantl |
|
56 |
|
breq2 |
|
57 |
56
|
anbi2d |
|
58 |
2 57
|
bitrid |
|
59 |
|
breq2 |
|
60 |
3 59
|
bitrid |
|
61 |
58 60
|
anbi12d |
|
62 |
61
|
notbid |
|
63 |
43 44 45 47 55 62
|
rspced |
|
64 |
46
|
adantr |
|
65 |
|
id |
|
66 |
65
|
intnanrd |
|
67 |
66
|
intnanrd |
|
68 |
67
|
adantl |
|
69 |
43 44 45 64 68 62
|
rspced |
|
70 |
63 69
|
pm2.61dan |
|
71 |
|
rexnal |
|
72 |
70 71
|
sylib |
|
73 |
72
|
nrex |
|
74 |
22 21 1
|
rexeqif |
|
75 |
73 74
|
mtbir |
|
76 |
42 75
|
pm3.2i |
|
77 |
|
annim |
|
78 |
76 77
|
mpbi |
|
79 |
78
|
nimnbi2 |
|