| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexanuz2nf.1 |
|
| 2 |
|
rexanuz2nf.2 |
|
| 3 |
|
rexanuz2nf.3 |
|
| 4 |
|
0nn0 |
|
| 5 |
|
nn0ge0 |
|
| 6 |
5
|
rgen |
|
| 7 |
|
fveq2 |
|
| 8 |
|
nn0uz |
|
| 9 |
7 8
|
eqtr4di |
|
| 10 |
9
|
raleqdv |
|
| 11 |
5
|
ad2antlr |
|
| 12 |
|
simpll |
|
| 13 |
|
simpr |
|
| 14 |
12 13
|
eqbrtrd |
|
| 15 |
12 14
|
jca |
|
| 16 |
11 15
|
impbida |
|
| 17 |
16
|
ralbidva |
|
| 18 |
10 17
|
bitrd |
|
| 19 |
18
|
rspcev |
|
| 20 |
4 6 19
|
mp2an |
|
| 21 |
|
nfcv |
|
| 22 |
1 21
|
nfcxfr |
|
| 23 |
22 21 1
|
rexeqif |
|
| 24 |
20 23
|
mpbir |
|
| 25 |
2
|
ralbii |
|
| 26 |
25
|
rexbii |
|
| 27 |
24 26
|
mpbir |
|
| 28 |
|
1nn0 |
|
| 29 |
|
nngt0 |
|
| 30 |
29
|
rgen |
|
| 31 |
|
fveq2 |
|
| 32 |
|
nnuz |
|
| 33 |
31 32
|
eqtr4di |
|
| 34 |
33
|
raleqdv |
|
| 35 |
34
|
rspcev |
|
| 36 |
28 30 35
|
mp2an |
|
| 37 |
22 21 1
|
rexeqif |
|
| 38 |
36 37
|
mpbir |
|
| 39 |
3
|
ralbii |
|
| 40 |
39
|
rexbii |
|
| 41 |
38 40
|
mpbir |
|
| 42 |
27 41
|
pm3.2i |
|
| 43 |
|
nfv |
|
| 44 |
|
nfcv |
|
| 45 |
|
nfcv |
|
| 46 |
8
|
uzid3 |
|
| 47 |
46
|
adantr |
|
| 48 |
|
0re |
|
| 49 |
48
|
ltnri |
|
| 50 |
49
|
a1i |
|
| 51 |
|
eqcom |
|
| 52 |
51
|
biimpi |
|
| 53 |
50 52
|
brneqtrd |
|
| 54 |
53
|
intnand |
|
| 55 |
54
|
adantl |
|
| 56 |
|
breq2 |
|
| 57 |
56
|
anbi2d |
|
| 58 |
2 57
|
bitrid |
|
| 59 |
|
breq2 |
|
| 60 |
3 59
|
bitrid |
|
| 61 |
58 60
|
anbi12d |
|
| 62 |
61
|
notbid |
|
| 63 |
43 44 45 47 55 62
|
rspced |
|
| 64 |
46
|
adantr |
|
| 65 |
|
id |
|
| 66 |
65
|
intnanrd |
|
| 67 |
66
|
intnanrd |
|
| 68 |
67
|
adantl |
|
| 69 |
43 44 45 64 68 62
|
rspced |
|
| 70 |
63 69
|
pm2.61dan |
|
| 71 |
|
rexnal |
|
| 72 |
70 71
|
sylib |
|
| 73 |
72
|
nrex |
|
| 74 |
22 21 1
|
rexeqif |
|
| 75 |
73 74
|
mtbir |
|
| 76 |
42 75
|
pm3.2i |
|
| 77 |
|
annim |
|
| 78 |
76 77
|
mpbi |
|
| 79 |
78
|
nimnbi2 |
|