Metamath Proof Explorer


Theorem rexanuz2nf

Description: A simple counterexample related to theorem rexanuz2 , demonstrating the necessity of its disjoint variable constraints. Here, j appears free in ph , showing that without these constraints, rexanuz2 and similar theorems would not hold (see rexanre and rexanuz ). (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rexanuz2nf.1 Z = 0
rexanuz2nf.2 φ j = 0 j k
rexanuz2nf.3 ψ 0 < k
Assertion rexanuz2nf ¬ j Z k j φ ψ j Z k j φ j Z k j ψ

Proof

Step Hyp Ref Expression
1 rexanuz2nf.1 Z = 0
2 rexanuz2nf.2 φ j = 0 j k
3 rexanuz2nf.3 ψ 0 < k
4 0nn0 0 0
5 nn0ge0 k 0 0 k
6 5 rgen k 0 0 k
7 fveq2 j = 0 j = 0
8 nn0uz 0 = 0
9 7 8 eqtr4di j = 0 j = 0
10 9 raleqdv j = 0 k j j = 0 j k k 0 j = 0 j k
11 5 ad2antlr j = 0 k 0 j = 0 j k 0 k
12 simpll j = 0 k 0 0 k j = 0
13 simpr j = 0 k 0 0 k 0 k
14 12 13 eqbrtrd j = 0 k 0 0 k j k
15 12 14 jca j = 0 k 0 0 k j = 0 j k
16 11 15 impbida j = 0 k 0 j = 0 j k 0 k
17 16 ralbidva j = 0 k 0 j = 0 j k k 0 0 k
18 10 17 bitrd j = 0 k j j = 0 j k k 0 0 k
19 18 rspcev 0 0 k 0 0 k j 0 k j j = 0 j k
20 4 6 19 mp2an j 0 k j j = 0 j k
21 nfcv _ j 0
22 1 21 nfcxfr _ j Z
23 22 21 1 rexeqif j Z k j j = 0 j k j 0 k j j = 0 j k
24 20 23 mpbir j Z k j j = 0 j k
25 2 ralbii k j φ k j j = 0 j k
26 25 rexbii j Z k j φ j Z k j j = 0 j k
27 24 26 mpbir j Z k j φ
28 1nn0 1 0
29 nngt0 k 0 < k
30 29 rgen k 0 < k
31 fveq2 j = 1 j = 1
32 nnuz = 1
33 31 32 eqtr4di j = 1 j =
34 33 raleqdv j = 1 k j 0 < k k 0 < k
35 34 rspcev 1 0 k 0 < k j 0 k j 0 < k
36 28 30 35 mp2an j 0 k j 0 < k
37 22 21 1 rexeqif j Z k j 0 < k j 0 k j 0 < k
38 36 37 mpbir j Z k j 0 < k
39 3 ralbii k j ψ k j 0 < k
40 39 rexbii j Z k j ψ j Z k j 0 < k
41 38 40 mpbir j Z k j ψ
42 27 41 pm3.2i j Z k j φ j Z k j ψ
43 nfv k ¬ j = 0 j j 0 < j
44 nfcv _ k j
45 nfcv _ k j
46 8 uzid3 j 0 j j
47 46 adantr j 0 j = 0 j j
48 0re 0
49 48 ltnri ¬ 0 < 0
50 49 a1i j = 0 ¬ 0 < 0
51 eqcom j = 0 0 = j
52 51 biimpi j = 0 0 = j
53 50 52 brneqtrd j = 0 ¬ 0 < j
54 53 intnand j = 0 ¬ j = 0 j j 0 < j
55 54 adantl j 0 j = 0 ¬ j = 0 j j 0 < j
56 breq2 k = j j k j j
57 56 anbi2d k = j j = 0 j k j = 0 j j
58 2 57 bitrid k = j φ j = 0 j j
59 breq2 k = j 0 < k 0 < j
60 3 59 bitrid k = j ψ 0 < j
61 58 60 anbi12d k = j φ ψ j = 0 j j 0 < j
62 61 notbid k = j ¬ φ ψ ¬ j = 0 j j 0 < j
63 43 44 45 47 55 62 rspced j 0 j = 0 k j ¬ φ ψ
64 46 adantr j 0 ¬ j = 0 j j
65 id ¬ j = 0 ¬ j = 0
66 65 intnanrd ¬ j = 0 ¬ j = 0 j j
67 66 intnanrd ¬ j = 0 ¬ j = 0 j j 0 < j
68 67 adantl j 0 ¬ j = 0 ¬ j = 0 j j 0 < j
69 43 44 45 64 68 62 rspced j 0 ¬ j = 0 k j ¬ φ ψ
70 63 69 pm2.61dan j 0 k j ¬ φ ψ
71 rexnal k j ¬ φ ψ ¬ k j φ ψ
72 70 71 sylib j 0 ¬ k j φ ψ
73 72 nrex ¬ j 0 k j φ ψ
74 22 21 1 rexeqif j Z k j φ ψ j 0 k j φ ψ
75 73 74 mtbir ¬ j Z k j φ ψ
76 42 75 pm3.2i j Z k j φ j Z k j ψ ¬ j Z k j φ ψ
77 annim j Z k j φ j Z k j ψ ¬ j Z k j φ ψ ¬ j Z k j φ j Z k j ψ j Z k j φ ψ
78 76 77 mpbi ¬ j Z k j φ j Z k j ψ j Z k j φ ψ
79 78 nimnbi2 ¬ j Z k j φ ψ j Z k j φ j Z k j ψ