Description: Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexbi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | ||
| 2 | 1 | ralimi | |
| 3 | rexim | ||
| 4 | 2 3 | syl | |
| 5 | biimpr | ||
| 6 | 5 | ralimi | |
| 7 | rexim | ||
| 8 | 6 7 | syl | |
| 9 | 4 8 | impbid |