Metamath Proof Explorer


Theorem rexbi

Description: Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)

Ref Expression
Assertion rexbi x A φ ψ x A φ x A ψ

Proof

Step Hyp Ref Expression
1 biimp φ ψ φ ψ
2 1 ralimi x A φ ψ x A φ ψ
3 rexim x A φ ψ x A φ x A ψ
4 2 3 syl x A φ ψ x A φ x A ψ
5 biimpr φ ψ ψ φ
6 5 ralimi x A φ ψ x A ψ φ
7 rexim x A ψ φ x A ψ x A φ
8 6 7 syl x A φ ψ x A ψ x A φ
9 4 8 impbid x A φ ψ x A φ x A ψ