Metamath Proof Explorer


Theorem rexbiOLD

Description: Obsolete version of rexbi as of 31-Oct-2024. (Contributed by Scott Fenton, 7-Aug-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rexbiOLD x A φ ψ x A φ x A ψ

Proof

Step Hyp Ref Expression
1 ralbi x A ¬ φ ¬ ψ x A ¬ φ x A ¬ ψ
2 1 notbid x A ¬ φ ¬ ψ ¬ x A ¬ φ ¬ x A ¬ ψ
3 notbi φ ψ ¬ φ ¬ ψ
4 3 ralbii x A φ ψ x A ¬ φ ¬ ψ
5 dfrex2 x A φ ¬ x A ¬ φ
6 dfrex2 x A ψ ¬ x A ¬ ψ
7 5 6 bibi12i x A φ x A ψ ¬ x A ¬ φ ¬ x A ¬ ψ
8 2 4 7 3imtr4i x A φ ψ x A φ x A ψ