Metamath Proof Explorer


Theorem rexbid

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998)

Ref Expression
Hypotheses rexbid.1 x φ
rexbid.2 φ ψ χ
Assertion rexbid φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 rexbid.1 x φ
2 rexbid.2 φ ψ χ
3 2 adantr φ x A ψ χ
4 1 3 rexbida φ x A ψ x A χ