Metamath Proof Explorer


Theorem rexbida

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003)

Ref Expression
Hypotheses rexbida.1 x φ
rexbida.2 φ x A ψ χ
Assertion rexbida φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 rexbida.1 x φ
2 rexbida.2 φ x A ψ χ
3 2 pm5.32da φ x A ψ x A χ
4 1 3 exbid φ x x A ψ x x A χ
5 df-rex x A ψ x x A ψ
6 df-rex x A χ x x A χ
7 4 5 6 3bitr4g φ x A ψ x A χ