Metamath Proof Explorer


Theorem rexbidv2

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis rexbidv2.1 φ x A ψ x B χ
Assertion rexbidv2 φ x A ψ x B χ

Proof

Step Hyp Ref Expression
1 rexbidv2.1 φ x A ψ x B χ
2 1 exbidv φ x x A ψ x x B χ
3 df-rex x A ψ x x A ψ
4 df-rex x B χ x x B χ
5 2 3 4 3bitr4g φ x A ψ x B χ