Metamath Proof Explorer


Theorem rexbidvaALT

Description: Alternate proof of rexbidva , shorter but requires more axioms. (Contributed by NM, 9-Mar-1997) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis rexbidvaALT.1 φ x A ψ χ
Assertion rexbidvaALT φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 rexbidvaALT.1 φ x A ψ χ
2 nfv x φ
3 2 1 rexbida φ x A ψ x A χ