Metamath Proof Explorer


Theorem rexbii2

Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004)

Ref Expression
Hypothesis rexbii2.1 x A φ x B ψ
Assertion rexbii2 x A φ x B ψ

Proof

Step Hyp Ref Expression
1 rexbii2.1 x A φ x B ψ
2 1 exbii x x A φ x x B ψ
3 df-rex x A φ x x A φ
4 df-rex x B ψ x x B ψ
5 2 3 4 3bitr4i x A φ x B ψ