Metamath Proof Explorer


Theorem rexbiia

Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999)

Ref Expression
Hypothesis rexbiia.1 x A φ ψ
Assertion rexbiia x A φ x A ψ

Proof

Step Hyp Ref Expression
1 rexbiia.1 x A φ ψ
2 1 pm5.32i x A φ x A ψ
3 2 rexbii2 x A φ x A ψ