Metamath Proof Explorer


Theorem rexcom13

Description: Swap first and third restricted existential quantifiers. (Contributed by NM, 8-Apr-2015)

Ref Expression
Assertion rexcom13 x A y B z C φ z C y B x A φ

Proof

Step Hyp Ref Expression
1 rexcom x A y B z C φ y B x A z C φ
2 rexcom x A z C φ z C x A φ
3 2 rexbii y B x A z C φ y B z C x A φ
4 rexcom y B z C x A φ z C y B x A φ
5 1 3 4 3bitri x A y B z C φ z C y B x A φ