Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
rexcom4a
Next ⟩
rexanid
Metamath Proof Explorer
Ascii
Unicode
Theorem
rexcom4a
Description:
Specialized existential commutation lemma.
(Contributed by
Jeff Madsen
, 1-Jun-2011)
Ref
Expression
Assertion
rexcom4a
⊢
∃
x
∃
y
∈
A
φ
∧
ψ
↔
∃
y
∈
A
φ
∧
∃
x
ψ
Proof
Step
Hyp
Ref
Expression
1
rexcom4
⊢
∃
y
∈
A
∃
x
φ
∧
ψ
↔
∃
x
∃
y
∈
A
φ
∧
ψ
2
19.42v
⊢
∃
x
φ
∧
ψ
↔
φ
∧
∃
x
ψ
3
2
rexbii
⊢
∃
y
∈
A
∃
x
φ
∧
ψ
↔
∃
y
∈
A
φ
∧
∃
x
ψ
4
1
3
bitr3i
⊢
∃
x
∃
y
∈
A
φ
∧
ψ
↔
∃
y
∈
A
φ
∧
∃
x
ψ