Metamath Proof Explorer


Theorem rexcom4a

Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011)

Ref Expression
Assertion rexcom4a x y A φ ψ y A φ x ψ

Proof

Step Hyp Ref Expression
1 rexcom4 y A x φ ψ x y A φ ψ
2 19.42v x φ ψ φ x ψ
3 2 rexbii y A x φ ψ y A φ x ψ
4 1 3 bitr3i x y A φ ψ y A φ x ψ