Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
rexcom4b
Next ⟩
ceqsal1t
Metamath Proof Explorer
Ascii
Unicode
Theorem
rexcom4b
Description:
Specialized existential commutation lemma.
(Contributed by
Jeff Madsen
, 1-Jun-2011)
Ref
Expression
Hypothesis
rexcom4b.1
⊢
B
∈
V
Assertion
rexcom4b
⊢
∃
x
∃
y
∈
A
φ
∧
x
=
B
↔
∃
y
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
rexcom4b.1
⊢
B
∈
V
2
rexcom4a
⊢
∃
x
∃
y
∈
A
φ
∧
x
=
B
↔
∃
y
∈
A
φ
∧
∃
x
x
=
B
3
1
isseti
⊢
∃
x
x
=
B
4
3
biantru
⊢
φ
↔
φ
∧
∃
x
x
=
B
5
4
rexbii
⊢
∃
y
∈
A
φ
↔
∃
y
∈
A
φ
∧
∃
x
x
=
B
6
2
5
bitr4i
⊢
∃
x
∃
y
∈
A
φ
∧
x
=
B
↔
∃
y
∈
A
φ